
SI100B-23Spring-Project

Part 0: Set Up Environment

Python Version: 3.7+
Third Party Library: pip install -r requirements.txt

Part 1 (20 points): Official Accounts Crawling

Background

Web scraping is an essential skill for extracting data from websites. It allows you to collect and process vast amounts
of information quickly, which can be useful for research, data analysis, and many other applications. In the file
processing module, you may often need to acquire data from various sources, and web scraping is an efficient way to
achieve that.

https://mp.weixin.qq.com/mp/appmsgalbum?&action=getalbum&album_id=1842688941473251331&scene=173

You can run python Part1_OfficialAccountsCrawling\mainCrawl.py to see the result.

This project aims to provide an introduction to web scraping for students with a non-computer science background,
focusing on the importance of web scraping in daily learning activities, especially in the context of a file processing
module. By completing this project, you will learn how to extract valuable information from web pages using Python,
which can be helpful in a variety of real-world scenarios.

Background

Web scraping is an essential skill for extracting data from websites. It allows you to collect and process vast amounts
of information quickly, which can be useful for research, data analysis, and many other applications. In the file
processing module, you may often need to acquire data from various sources, and web scraping is an efficient way to
achieve that.

Project Description

In this project, you will build a simple web scraper to extract information from WeChat official accounts. The scraper
will obtain information such as article titles, authors, and publication times.

To complete this project, you need to accomplish the following tasks and understand the purpose of each function:

1. Change_Params(msgid) : Update the params dictionary with a new msgid .
2. Author_Time_Crawl(page_url) : Write a function that sends an HTTP GET request to the given URL and parses the

HTML content to extract the author and time of the article.
3. First_Crawl() : Write a function that sends an HTTP GET request to the first URL (the article collection page)

and extracts the first article's title, data-msgid attribute, and URL.
4. Main web scraping logic: Call the First_Crawl() function to get the first article's data-msgid, then repeatedly

send HTTP GET requests to the base_url with updated params until the last article is reached. For each article,
call the Author_Time_Crawl() function to extract the author and time information and print the result.

https://github.com/SHTechBoBo/SI100B-23Spring-Project
https://mp.weixin.qq.com/mp/appmsgalbum?&action=getalbum&album_id=1842688941473251331&scene=173

Implementation Details

1. In the Change_Params() function, you need to update the params dictionary with the new msgid . You can
achieve this by setting params["begin_msgid"] to the new msgid . This function is responsible for updating the
parameters used in the HTTP GET request.

2. In the Author_Time_Crawl() function, use the requests library to send an HTTP GET request to the provided
URL. Then, use the BeautifulSoup library to parse the HTML content and extract the author and time of the
article. This function focuses on extracting the desired information from individual articles.

3. In the First_Crawl() function, send an HTTP GET request to the first URL and parse the HTML content using
BeautifulSoup . Extract the first article's title, data-msgid attribute, and URL, and call the Author_Time_Crawl()

function with the extracted URL to obtain the author and time information. This function initiates the web
scraping process by starting with the first article.

4. In the main part of the script, start the web scraping process by calling the First_Crawl() function and update
the params with the new msgid . Send HTTP GET requests to the base_url and extract the required
information for each article using the Author_Time_Crawl() function. The main logic drives the entire web
scraping process and orchestrates the functions mentioned above.

Example Output

Todo List:

1. Crawl all articles by title(6'), author(4') and time(8').
2. Save the crawled information into excel(6') in the specified form(6') .

Part 2 (35 points): Stack Files Processing

Background

In this project, you will work with different tasks related to processing files and folders. Each task will have different
requirements and complexity levels. You will be asked to handle files, folders, and compressed files, as well as perform
word counting for text files. In order to complete this project, you'll need to fill in the missing parts of the provided
code. The main goal is to process a set of disorganized folders containing files, subfolders, and compressed files, and
extract all the contents.

Project Description

This script defines a set of classes and functions to handle file and folder operations, including compressed files. The
script can be broken down into three sections:

tools.py - This file contains utility functions for working with paths, files, and folders. It includes functions for checking
if a path exists, if it's a folder, or if it's a compressed file, as well as functions for manipulating paths and copying files.

compressed_file.py - This file defines the CompressedFile class, which inherits from the File classand provides
functionality for handling compressed files. It includes methods for decompressing compressed files in various
formats (zip, tar, rar, gz, 7z), although some of these methods are not yet implemented. When a CompressedFile
object is created, it checks if the provided path is a valid compressed file and initializes the necessary attributes such
as file name, path, password (if applicable), and compression method.

file.py - This file defines the File class, which is a base class for working with files. It includes methods for transferring
files to a new location, and it provides a string representation of the file object for easy printing.

folder.py - This file defines the Folder class, which provides functionality for working with folders. It includes methods
for unpacking the folder's contents, including decompressing any compressed files and recursively processing any
subfolders. The Folder class also has a method for counting the occurrences of words in text files within the folder.

Todo List:

Task 1 (7 points): Handle only files (no word counting required).

Task 2 (7 points): Handle only files and perform word counting for text files.

Task 3 (7 points): Handle files and single-layer folders (word counting required).

Task 4 (7 points): Handle files, single-layer folders, and compressed files (with either no contents or only files inside).
Perform word counting for text files.

Task 5 (7 points): Using all above words counting, find the passwords to solve the password-protected compressed
file.

Part 3 (15 points): Functional Perfection

As we can see, the part two's function is not abundant enough, we need to make it more prefect by doing these
following tasks. And you may get extra points by finishing the following tasks:

Task 6 (7 points): Handle multi-layer folders (word counting required).

Task 7 (8 points): Handle multi-layer folders and compressed files (which may contain files, folders, and compressed
files). Perform word counting for text files.

Part 4 (30 points): Live coding

After the project submission, we will have a live coding session with all the teams, where you will use the code you
wrote for parts 1-3 to solve a new problem. Make sure you're familiar with the code you submit and the libraries you
used, and also make sure you're comfortable with the basic Python programming techniques we showed in lecture.

https://github.com/SHTechBoBo/SI100B-23Spring-Project

SI100B-23Spring-Project

Part 0: Set Up Environment

Python Version: 3.7+
Third Party Library: pip install -r requirements.txt

Part 1 (20 points): Official Accounts Crawling

https://mp.weixin.qq.com/mp/appmsgalbum?&action=getalbum&album_id=1842688941473251331&scene=173

You can run python Part1_OfficialAccountsCrawling\mainCrawl.py to see the result.

Todo List:

1. Crawl all articles by title(6'), author(4') and time(8').
2. Save the crawled information into excel(6') in the specified form(6') .

Part 2 (35 points): Stack Files Processing

Part 3 (15 points): Functional Perfection

Part 4 (30 points): Live coding

https://github.com/SHTechBoBo/SI100B-23Spring-Project
https://mp.weixin.qq.com/mp/appmsgalbum?&action=getalbum&album_id=1842688941473251331&scene=173

